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Abstract Optimization is an essential part of any automotive industrial management system. Supply chain 
management procurement and marketing activities needs a lot of handling due to its the massive number of external and 
internal resource constraints. The optimization seeks to a compromise points between what will be paid as managerial 
expenditures and what will be gained as reduction in resource prices. This paper presents a new optimization model that 
incorporates the uncertainties in market and negotiable parameters performed by procurement sector. Two alternative 
objective representation as a linear and a fractional programming functions are introduced. Parameters uncertainties were 
expressed using fuzzy and/or chance constraints. Market competitive prices are represented here as chance constraints giving 
more probability for firms to increment its prices to most permissible limits under uncertainty facing undeterministic market 
prices. The generated problems from the three alternative were solved and compared. The proposed models are applied to a 
case study of an automotive manufacturing system, where the fuzzy chance formulation has been transformed to a 
deterministic equivalent with a nonlinear objective function. The obtained solutions are useful for identifying sustainable 
management supply with maximized system profit. The results indicate that the new model representation gave better 
solutions concerning system profit and system cost. 
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1. Introduction 

Optimization theory has many applications in a wide 
variety of fields, e.g., the study of supply chain, 
finance, production, transportation, physical, and 
engineering design, to name a few. The optimization 
problems can be classified into two main 
approaches: deterministic optimization problems 
and optimization under uncertainty. Most of 
deterministic optimization problems in nature ignore 
the variance involved in the parameters. However, 
many of these models have parameters that are 
changing with time, e.g., fuel price appearing in the 
cost function of the model etc., and the model is 
optimized using a fixed value of that parameter. The 
results of these problems when implemented in real 
time, are unrealistic and unrepresentative, because 
the dynamic parameters are no longer at the values 
for which the optimization problem was solved and 
the results were obtained. Hence, these uncertainties 
can be controlled by over designing the equipment 
or overestimating the tuning parameters or replacing 
the uncertain parameters with their nominal values, 
thereby solving the deterministic optimization 
problem. Both of these methods lead to solutions 
that are suboptimal or sometimes infeasible. 
Consequently, the traditional deterministic 
programming methods may face dilemma in 
supporting Supply Chains SC management because 
of their weakness in reflecting uncertain 
information. 
 Therefore, the area of optimization under 
uncertainty appeared, aiming to improve the 
approaches or methodologies to create reliable 
solutions even in the presence of parametric 
uncertainty. [1] 
However, the uncertainties lead to difficulties in 
developing optimization models for supporting 
decision making in SC management and getting the 
confidence of decisions. The uncertainty in real-
world decision making originates from several 
sources, i.e., fuzziness, randomness, ambiguous. 
The two powerful approaches for mathematical 
programming under uncertainty are Stochastic 
Programming (SP) and Fuzzy Programming (FP), 
where the optimization problem contain some 
uncertain data or linguistic information. The Fuzzy 
Programming FP method, where the uncertainty is 
considered as a fuzzy set, is effective in reflecting 
ambiguity and vagueness in resource availabilities. 
Stochastic Programming SP handles uncertain 
problems whose parameters’ probability 

distributions are known. The two very popular 
approaches of Stochastic programming namely, 
Recourse programming proposed by Dantzig [2] and 
Chance-constrained programming proposed by 
Charnes and Cooper [3]. A chance-constrained 
programming CCP is the most prominent method 
used for solving optimization problems involving 
constraints having finite probability of being 
violated.  Also, it shows very good characteristics in 
satisfying the constraints with a probability.   
Several integrated fuzzy and chance-constrained 
programming models have been developed and 
applied successfully in various fields. The chance 
constrained programming with fuzzy parameters 
model was developed by [4] through predefined 
confidence levels of fuzzy-constraints satisfaction 
into optimization models.  The fuzzy constraints are 
converted to deterministic ones at predetermined 
confidence levels. While [5] developed an inexact 
double-sided fuzzy chance-constrained 
programming (IDFCCP) model for agricultural 
water quality management under uncertainties. 
Similarly,  [6] proposed an inexact double sided 
fuzzy-random-chance-constrained programming 
model for handling Nanshan district’s air quality 
management problem under uncertainty. 
A stochastic linear fractional programming (SLFP) 
approach was developed by [7] for identifying 
sustainable MSW management strategies under 
uncertainty. The SLFP method can solve ratio 
optimization problems associated with random 
information, where chance-constrained 
programming (CCP) was integrated into a linear 
fractional programming (LFP) framework. Also, [8] 
developed a fuzzy fractional chance-constrained 
programming model (FFCCPM) for supporting 
regional air quality management under uncertainty. 
[9] developed a fuzzy chance-constrained linear 
fractional programming method for agricultural 
water resources management under multiple 
uncertainties. 
On the other hand, reducing cost or increasing profit 
with a capacity to deal with parameters uncertainty, 
whether fuzzy or stochastic, are considered 
important issues in an efficient supply chain. 
Environmental coefficients are often fuzzy or 
stochastic for most problems of supply chain 
because of incomplete information. The main aim of 
any supply chain planning is effective coordination 
and integration of the key business activities 
undertaken by an enterprise, starting from the 
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procurement of raw materials to the final products 
distribution to the customers. 
Previously, a number of optimization models were 
developed representing SC model for an automotive 
industry [10]. The first model is crisp LP where in 
the second a fuzzified objective function, constraints 
and coefficients, developed a fuzzy LP model to 
analyze and predict the behavior of the system. 
Finally, they developed a fuzzy expert system (FES) 
based on rule bases that described the behavior of 
SC as we have extracted from and negotiated with 
the experts. 
Fuzzy sets and rough sets were used by [11] for 
representing uncertainty in an automotive industry 
model. Although the uncertainty is desired in the 
previous work via fuzzy programming and rough set 
theory, but in the reality, the supply chain not only 
based on the fuzziness but also probability of 
achieving the constraints. 
Hence, the major aims of this study entails (1) 
Formulation of an FCCFP model based the 
integration of fuzzy programming (FP), chance-
constrained programming (CCP), and linear 
fractional programming (LFP) models. It considers 
the ratio between the system benefit and the system 
cost concurrently and reflects the system efficiency 
as well as handling uncertainty expressed as 
probability distributions or fuzziness.  (2) Scenario 
analysis of the model applicability under multiple 
situations to be satisfied under specific confidence 
levels and reliability scenarios. (3) Application of 
the developed model for solving automotive 
industry problem and the obtained solutions are 
compared with some references.  
The remainder of this paper is divided into the 
following sections: Formulation of the proposed 
models is presented in Section 2.  In section 3, case 
study analysis as well as its results yielding uses of 
the proposed models are introduced, finally the 
paper is concluded in Section 4. 

2. Methodology  

This section introduces the detailed procedure for 
formulating and solving the proposed models. 
Before going through these algorithm steps in 
sections (2-2) and (2-3), the mathematical Fractional 
Programming Problem formulation used in 
representing the objective function is introduced in 
section (2.1) are described as follows. 

2.1. Fractional Programming FP 

The following general Fractional Programming 
Problem (FPP) model mathematical is used to 
representing automotive industry problem. [12]:  

 𝑚𝑖𝑛/𝑚𝑎𝑥    𝑓(𝑋) =
𝐴𝑋 + 𝑎
𝐵𝑋 + 𝑏 (1.1) 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

 𝐶𝑋 ≤ 𝐷 (1.2) 

 𝑋 ≥ 0  (1.3) 

 𝐵𝑋 + 𝑏 ≠ 0 (1.4) 
 

where C is an auxiliary variable; X and D are 
column vectors, A and B are row vectors; and a & b 
are constants. 
Fractional programming of the form (1.1) arises in a 
natural way such as the ratios (profit/cost), 
(profit/time), (cost/time), (output/input), (waste of 
raw material/quantity of used raw material), are to 
be maximized or minimized. These problems are 
often linear or at least concave-convex fractional 
programming. 
Fractional programming (FP) is an effective tool for 
handling the optimization problems with ratio. the 
main advantages of FP are the flexibility, balancing 
conflicting objectives, also, it can compare 
objectives of different aspects directly through their 
original magnitudes and provide a balanced measure 
of system efficiency. It was indicated that FP could 
better fit the real problems through considering 
optimization of ratio between the physical and/or 
economic quantities [13]. 
On the other hand, there are many different direct 
algorithms to solve the fractional programming 
problem [12]. The Charnes–Cooper’s transformation 
algorithm is considered in this paper, where the FPP 
is converted into an equivalent linear programming 
problem and solves it using already existing 
standard algorithms for LPP. [14]. 
 
 𝑚𝑎𝑥/𝑚𝑖𝑛    𝜆  (1.5) 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  

 𝐶𝑇𝑌 + 𝐵𝑇𝑌 ≥ 𝐴𝑇 (1.6) 
 −𝐷𝑇𝑌 + 𝑏𝜆 = 𝑎 (1.7) 
 𝑌 ≥ 0  (1.8) 

where Y is a column vector; 𝜆 is a scalar; and T over 
the matrix denotes the transpose of the matrix. 
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2.2. Chance-Constrained Fractional 
Programming CCFP 

Chance constrained programming is an effective and 
useful approach for treating constraints where some 
of the coefficients are uncertain in decision making. 
The decision makers are interested in satisfying an 
uncertainty constraint, by at least a pre-specified 
probability at the smallest cost. 
The chance constrained fractional programming is a 
special type of chance constrained programming 
problem, where the objective function of CCFP is 
the ratio of two functions. The CCFP model can be 
expressed as follows: 

 𝑚𝑖𝑛/𝑚𝑎𝑥   𝑓(𝑋) =
𝐴𝑋 + 𝑎
𝐵𝑋 + 𝑏 (2.1) 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

 𝑃𝑟[𝐶𝑋 ≤ 𝐷] ≥ 1 − 𝑝 (2.2) 
 𝑀𝑋 ≤ 𝐹 (2.3) 
 𝑋 ≥ 0 (2.4) 
 𝐵𝑋 + 𝑏 ≠ 0  (2.5) 

 

Where 𝑃𝑟[ ] denotes the probability of the event 
[ ]; 𝑝 is the specified probability level of the 
constraint functions or confidence level of the 
constraints. C is a vector of coefficients in 
constraints; D is a random right-hand-side parameter 
in constraints.  

The detailed solution process for CCFP can be 
summarized as follows: 

Step 1: Formulate the original CCFP model as in (2-1) 
-(2-5). 

Step 2: Transform the chance constraint (2.2) into its 
crisp equivalence as [15]: 

 CX ≤ E(D) + Kp�var(D) (2.6) 

For the given probability level ‘p’, where 𝐾𝑝 is the 
standard normal value such that 𝛷�𝐾𝑝� = 1 − 𝑝   and 
𝛷�𝐾𝑝� represents the “cumulative distribution function” of 
the standard normal distribution evaluated at 𝐾𝑝. 

Step 3: Formulate the deterministic LFP generated 
from step (2).  

Step 4: Transform the FP model into a dual 
programming model (1.5) then solve it using LINGO 
Software and obtain solutions. 

Step 5: Repeat steps 2–4 under different 𝑝𝑖 levels. 

Step 6: Obtaining the values for the optimum solution.  

Step 7:  Stop. 

2.3. Fuzzy Chance-Constrained Fractional 
Programming FCCFP 

Fuzzy Chance Constrained Fractional Programming 
(FCCFP) technique is suitable in handling special 
variable containing information which is both 
fuzzily imprecise and probabilistically uncertain, 
where the uncertain parameters is represented as 
fuzzy sets and probability density functions. 

Generally, FCCFP model can be formulated as 
follows: 

 
𝑚𝑖𝑛/𝑚𝑎𝑥    𝑓(𝑋) =

�̃�𝑋 + 𝑎�
𝐵�𝑋 + 𝑏�

 (3.1) 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 
 𝑃𝑜𝑠��̃�𝑋 ≤ 𝐷�� ≥ 𝛼 (3.2) 
 𝑀�𝑋 ≤ 𝐹� (3.3) 
 𝑋 ≥ 0 (3.4) 
 𝐵�𝑋 + 𝑏� ≠ 0 (3.5) 

 
Where 𝑃𝑜𝑠[ ] denotes possibility in [ ],  
𝐴,� 𝑎�,𝐵� , 𝑏�, �̃�,𝐷� ,𝑀� ,𝐹� are fuzzy numbers which are 
expressed as fuzzy sets with membership functions 
𝜇 ��̃��,𝜇(𝑎�), 𝜇�𝐵��, 𝜇�𝑏��,𝜇 ��̃��,𝜇�𝐷��,𝜇�𝑀��,𝜇�𝐹�� 
with fuzzy tolerance of  α . Each predetermined α-
cut level consists of two reliability scenarios, with 
α-cut level under minimum and maximum 
reliability degrees, respectively. Generally, the 
problem can be expressed as: 
 

𝑃𝑜𝑠��̃� ≤�𝑚𝑖𝑛 𝐷��
= 𝑠𝑢𝑝�𝑚𝑖𝑛�𝜇�̃�  (𝑥�),𝜇𝐷�  (𝑦�)�|𝑥,𝑦
∈ 𝑅, 𝑥 ≤ 𝑦�� 

(3.6) 

𝑃𝑜𝑠��̃� ≤�𝑚𝑎𝑥 𝐷�� = 𝑖𝑛𝑓�𝑚𝑎𝑥�1 − 𝜇�̃�  (𝑥�), 1
− 𝜇𝐷�  (𝑦�)�|𝑥,𝑦 ∈ 𝑅, 𝑥 ≤ 𝑦�� 

  (3.7) 
 
Where �̃� ≤�𝑚𝑖𝑛 𝐷� presents that the equation �̃� ≤ 𝐷�  
should be satisfied at the minimum reliability 
degree; �̃� ≤�𝑚𝑎𝑥 𝐷� ̃ means that the equation �̃� ≤ 𝐷� 
should be satisfied at the maximum reliability 
degree. Eq. (3.6) means that the possibility of �̃� ≤ 𝐷�  
is the possibility that there exists at least one pair of 
values 𝑥,𝑦 ∈ 𝑅  such that  𝑥 ≤ 𝑦 and the specified 
values of  �̃� and 𝐷� are , 𝑥 and 𝑦 respectively [14]. 
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Conversely, the mathematical concept of Eq. (3.7) is 
contrary to that of the Eq. (3.6). 
Based on Eqs. (3.6) and (3.7), for any given 
α ∈ (0,1) the following two equations can be 
derived: 
 
 P𝑜𝑠��̃� ≤�𝑚𝑖𝑛 𝐷��

= 𝑠𝑢𝑝�𝑚𝑖𝑛�𝜇�̃�  (𝑥�), 𝜇𝐷�  (𝑦�)�|𝑥,𝑦 ∈ 𝑅, 𝑥
≤ 𝑦�� ≥ 𝛼 ⟺ 𝐶𝐿(𝛼)  ≤ 𝐵𝑅(𝛼)  

(3.8) 

 

 𝑃𝑜𝑠��̃� ≤�𝑚𝑎𝑥 𝐷�� = 𝑖𝑛𝑓�𝑚𝑎𝑥�1 − 𝜇�̃�  (𝑥�), 1
− 𝜇𝐷�  (𝑦�)�|𝑥,𝑦 ∈ 𝑅, 𝑥
≤ 𝑦�� > 𝛼 ⇔ 𝐶𝑅(1 − 𝛼)  
≤ 𝐵𝐿(1 − 𝛼) 

 

(3.9) 

where item 𝐶𝐿(𝛼)  is defined as the minimum 
values of all potential values at α-cut level, i.e.  
𝐶𝐿(𝛼) = 𝑖𝑛𝑓{𝐶|𝐶 = 𝜇−1(𝛼)�} . Similarly, 𝐷𝑅(𝛼) is 
defined as the maximum values of all potential 
values at an α-cut level, i.e. 𝐷𝑅(𝛼) =
𝑖𝑛𝑓{𝐶|𝐶 = 𝜇−1(𝛼)�}. 𝜇−1 is the inverse function of 
𝜇. 

Model (3.1) (FCCFP) can be converted into two equivalent 
crisp sub-models based on Eqs. (3.8) and (3.9). which 
correspond to the lower and upper bounds of desired 
objective function value under various α-cut levels. 

The first sub-model (I) based on the minimum 
reliability is as follows: 

     
 

𝑚𝑖𝑛/𝑚𝑎𝑥    𝑓(𝑋) =
�̃�𝑋 + 𝑎�
𝐵�𝑋 + 𝑏�

 (3.10) 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 
 𝐶𝐿(𝛼) 𝑋 ≤ 𝐷𝑅(𝛼)  (3.11) 

 𝑀�𝑋 ≤ 𝐹� (3.12) 

 𝑋 ≥ 0 (3.13) 

 𝐵�𝑋 + 𝑏� ≠ 0 (3.14) 

   
Whereas the second sub-model (II) based on the 
maximum reliability is as follows:                               

 
𝑚𝑖𝑛/𝑚𝑎𝑥    𝑓(𝑋) =

�̃�𝑋 + 𝑎�
𝐵�𝑋 + 𝑏�

 (3.15) 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 
 𝐶𝑅(1 − 𝛼) 𝑋 ≤ 𝐵𝐿(1 − 𝛼) (3.16) 

 𝑀�𝑋 ≤ 𝐹�  (3.17) 

 𝑋 ≥ 0 (3.18) 

 𝐵�𝑋 + 𝑏� ≠ 0 (3.19) 

 
The two groups of objective value and decision 
variables under different confidence levels 𝛼ℎ and 
constraint violation levels 𝑞𝑖 are obtained by solving 
the above sub-models.  The solutions can be 
expressed as  𝑓𝑜𝑝𝑡

± = �𝑓𝑜𝑝𝑡− ,𝑓𝑜𝑝𝑡+ � and 𝑥𝑜𝑝𝑡
± =

�𝑥𝑜𝑝𝑡− , 𝑥𝑜𝑝𝑡+ � respectively. 
 

The detailed procedures for formulating and solving 
the FCCFP are summarized as follows. 
 
Step 1: Identify the uncertain variables and acquire the 
related fuzzy possibility distribution information.  

Step 2: Construct FCCFP mathematical optimization 
model; 

Step 3: Set an initial significance level α-cut. 

Step 4: Convert fuzzy chance constraints to their 
respective crisp equivalents under the minimum and 
maximum reliability scenarios and obtain two FP 
models, based on FCCFP algorithm; 

Step 5: Solve the two sub-models and obtained 
solutions; 

Step 6: Repeat Steps 3–5 under different α-cut levels. 

Step7: Stop. 

3. Application with Results and Discussion 

The following case study is given to show the 
application of the proposed models and algorithms. 

3.1. case study overview 

Supply Chains SC systems of an automotive industry 
consist of 6 components, as shown in Fig (1). The 
tasks of each enterprise, as shown in Fig. (2), are: 
customer, marketing and sales, manufacturing and 
assembly (production plant), purchasing 
(procurement enterprise), and parts and raw materials 
suppliers, where all of them are interconnected [10].  
The role of marketing and procurement in selling and 
purchasing of goods in the SC are the main 
concentration of the research, with focus on:   
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• The role of procurement enterprise in purchasing 
most proper raw materials, which directly affect the 
operational costs of the production plant. 
• The role of procurement enterprise in negotiations 
with suppliers on price, transport, quality, etc. 
• The role of marketing enterprise in selling the 
product with the maximum possible price. 

• The role of procurement and marketing enterprises 
in finalizing a deal in minimum time. The stronger 
actions of these two enterprise will lead to sails 
contract for production plant in a shorter time and 
accordingly the investment costs of the production 
plant will be reduced. 

 
Figure 1: The component of SCM. 
 

 

 
The goal of modeling the SC is maximization of 
profit in dollars. The variables and parameters of the 
system are as follows: 
 Variables: 

P The final product price. 

M 
Costs to be paid by production plant in marketing 

sector; 

S Costs to be paid by production plant in 

procurement sector; 

O Operational costs of the production plant. 

T 
Lead time of the arrangement until a contract is 

held by customer. 

𝑆1 First raw material price. 

𝑆2 Second raw material price. 

𝑆3 Third raw material price. 

 Parameters: 

𝜋𝑚𝑖𝑛 
Minimum price is accepted by production plant 

to sell its product. 

𝜋𝑚𝑎𝑥 
Maximum price that this product would be sold. 

Market situation dictate this rate. 

𝜌1𝑚𝑖𝑛 The minimum price for first raw material. 

Raw material 1 
S1 

Raw material 2 
S2 

Raw material 3 
S3 

Purchasing 
Enterprise 

 
Production Plant  

 

 

Customer 
Marketing and 

Sales 
Enterprise 

Figure 2: Relationship between different sectors of the SC   

Manufacturing &Assembly 
Raw material 2 supplier 

Raw material 3 

Raw material 3 Purchasing 
Customer 

Customer 

Information Flow 

Information Flow 
Consultancy Services 
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𝜌1𝑚𝑎  The maximum price for first raw material. 

𝜌2𝑚𝑖𝑛 The minimum price for second raw material. 

𝜌2𝑚𝑎  The maximum price for second raw material. 

𝜌3𝑚𝑖𝑛 The minimum price for third raw material. 

𝜌3𝑚𝑎  The maximum price for third raw material. 

𝜉𝑚𝑒𝑑 Average operational costs of the factory. 

𝜉𝑚𝑖𝑛 Minimum operational costs of the factory. 

  The rate of annual interest. 

I 

Investing for the factory production. on making 

moulds, prototyping, and providing other 

conditions; 

𝜃1 

The rate, on which, each dollar paid in 

procurement enterprise will lead to a decrease 

in ρ1max in that rate. 

𝜃2 

The rate, on which, each dollar paid in 

procurement enterprise will lead to a decrease 

in ρ2max in that rate. 

𝜃3 

The rate, on which, each dollar paid in 

procurement enterprise will lead to a decrease 

in ρ3max in that rate. 

𝛽 

The rate, on which, each dollar paid in 

marketing enterprise will lead to an increase in 

πmin in that rate. 

𝜒 

The rate, on which, each dollar paid in 

procurement enterprise will lead to a decrease 

in ξmed in that rate. 

𝑇𝑚𝑎𝑥 Maximum acceptable time to production plant 

for finalizing the deal. 

𝛿 

The rate, on which, each dollar paid in 

marketing enterprise will lead to a decrease in 

investment costs 𝛼𝐼𝑇𝑚𝑎𝑥 in that rate. 

𝜀 

The rate, on which, each dollar paid in a 

procurement enterprise will lead to a decrease 

in investment costs 𝛼𝐼𝑇𝑚𝑎𝑥. 

𝜙 
Available budget for costing in marketing and 

purchasing units. 

This paper aims to investigate the best way to 
formulate automotive industrial model as an 
optimization problem considering a set of 
uncertainties scoped model parameters. 

This will include setting two different alternative 
representations to the objective function, one as 
fractional, and the other as a conventional linear 
representation. The interaction between the 
optimization model and the dynamic uncertain 
operational constrain parameters are to be modeled 
by two different formulations. The first as a chance 
constrained parameters and the second as a fuzzy 
chance constrained parameters. The proposed model 
will also be solved with crisp parameter values for 
verification purposes.  

3.2. Crisp (FP) Model 

𝑀𝑎𝑥 𝑓

=  
𝑃

[(𝑆1 + 𝑆2 + 𝑆3) +  𝑆 + 𝑀 +  𝑂 +  0.125𝑇] 

 
 

(4.1

) 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 
 𝑆1  ≥  𝜌1𝑚𝑎𝑥  −  𝜃1𝑆 (4.2) 

 𝑆2  ≥  𝜌2𝑚𝑎𝑥  −  𝜃2𝑆 (4.3) 

 𝑆3  ≥  𝜌3𝑚𝑎𝑥  −  𝜃3𝑆 (4.4) 

 𝑆1  ≥  𝜌1𝑚𝑖𝑛 (4.5) 

 𝑆2  ≥  𝜌2𝑚𝑖𝑛 (4.6) 
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 𝑆3  ≥  𝜌3𝑚𝑖𝑛 (4.7) 

 𝑃 ≤ 𝜋𝑚𝑖𝑛 + 𝛽𝑀 (4.8) 

 𝑃 ≤ 𝜋𝑚𝑎𝑥 (4.9) 

 𝑂 ≥ 𝜉𝑚𝑒𝑑 − 𝜒𝑆 (4.10) 

 𝑂 ≥ 𝜉𝑚𝑖𝑛 (4.11) 

 𝛼𝐼𝑇 ≥ 𝛼𝐼𝑇𝑚𝑎𝑥 − 𝛿𝑀 − 𝜀𝑆 (4.12) 

 𝑀 + 𝑆 ≤ 𝜙 (4.13) 

 𝑇 ≤ 𝑇𝑚𝑎𝑥 (4.14) 

(𝑆1 + 𝑆2 + 𝑆3) +  𝑆 + 𝑀 +  𝑂 +  0.125𝑇
≠ 0 

  (4.15) 

       
The above mathematical model is principle for all 
further common model representation in this paper. 
where its elements are defined as: Objective function 
(f) is maximizing the ratio between the price as a 
numerator and the expenses as a denominator. 
Constraints (4.2) - (4.9) are related to procurement 
enterprise, since this department affects purchasing 
raw materials from suppliers and sales of products 
through marketing and sales enterprise to customers. 
The proposed price of raw materials by each supplier 
is in interval [𝜌𝑖𝑚𝑖𝑛,𝜌𝑖𝑚𝑎𝑥] , where 𝜌𝑖𝑚𝑎𝑥 is first 
offer and 𝜌𝑖𝑚𝑖𝑛is lowest possible price. In such a 
situation, production plant prefers to spend $S in 
procurement department to negotiate with suppliers 
to decrease 𝜌𝑖𝑚𝑎𝑥. However, this investment in 
procurement department has different effect on price 
reduction, which is shown by parameters 𝜃𝑖.  Hence, 
constraints (4.2) - (4.7) try to illustrate S and Si 
relations. The same situation exists for marketing 
department, which is shown by constrains (4-8) and 
(4-9). Constrains (4-10) and (4-11) show the effect of 
procurement department on operational costs, and (4-
12) demonstrates their effect on speed up of supply 
and sales operation. Finally, constrains (4-13) is the 
budget bound and (4-14) illustrates the time 
restriction.  
The parameters and the coefficients of the model 
have been determined after a long negotiation and 
discussion with the experts of the production plant 
and tuning them with some mathematical and 
statistical models as Table 1 [10]: 

Table 1: Value of relative parameters used in the numerical 
experiments. 

𝜋𝑚𝑖𝑛 𝜋𝑚𝑎𝑥 𝜌1𝑚𝑎𝑥 𝜌1𝑚𝑖𝑛 𝜌2𝑚𝑎𝑥 𝜌2𝑚𝑖𝑛                                                                                                 𝜌3𝑚𝑎𝑥 
11 16 6.5 5 17 1.2 1 

𝜌3𝑚𝑖𝑛 I 𝜃1 𝜃2 𝜃3 β χ 
0.5 0.625 1.1 1.3 1.4 1.5 1.2 
𝜉𝑚𝑒𝑑 𝜉𝑚𝑖𝑛 α 𝜀 𝜙 𝑇𝑚𝑎𝑥 δ 
1.2 0.8 0.2 0.05 1.5 1 0.05 

 
The previous set of alternative objective function 
and constrain formulation will lead to the following 
problem matrix. A comparative study between the 
solution results of problems of Table 2 is introduced 
in this subsection. the crisp optimization problem 
depends on how to reach the most proper set of 
procurement investment that reach the optimal price 
by tuning the material price between two specific 
market limits. The rate  𝜃1  that considers reduction 
in cost to each paid dollar in procurement is 
predefined to a certain crisp value that is not always 
valued. However the problem tries to reach an 
optimal solution by varying the price of raw material 
between a minimum value  𝜌𝑚𝑖𝑛 and reducible 
maximum value (𝜌𝑚𝑎𝑥 – 𝜃1𝑆) . this shall interact in 
the optimization problem by bounding the selling 
price between a maximum dedicated market value 
(𝜋𝑚𝑎𝑥  and a minimum marginal profit value  𝜋𝑚𝑖𝑛). 
With the following variable results, the negotiation 
lead-time generated a loss of 𝛼𝐼𝑇 = 0.05.  

Table 2: Solution of the crisp models 

𝑉𝑎𝑟. 
LP 

Solution (1000$) 

FP 

Solution (1000$) 

𝑓 //// 0.7990895 

𝑃 12.67308 12.67308 

𝑆1 6.076923 6.076923 

𝑆2 1.2 1.2 

𝑆3 0.5 0.5 

𝑆 0.3846154 0.3846154 

𝑀 1.115385 1.115385 

𝑂 0.8 0.8 

𝑇 0.4 0.4 

𝑃𝑟𝑜𝑓𝑖𝑡 (𝑍) 2.546157 2.546157 
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3.3. Chance-Constrained Fractional 
Programming (CCFP) 

𝑀𝑎𝑥 𝑓

=  
𝑃

[(𝑆1 + 𝑆2 + 𝑆3) +  𝑆 + 𝑀 +  𝑂 +  0.125𝑇] 

 
 

(5.1

) 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 
 𝑃𝑟�𝑆1 + 𝜃1𝑆 ≥  𝜌1𝑚𝑎𝑥

± �
≥ 1 − 𝑝  

(5.2) 

 𝑃𝑟�𝑆2 + 𝜃2𝑆 ≥  𝜌2𝑚𝑎𝑥
± �
≥ 1 − 𝑝  

(5.3) 

 𝑃𝑟�𝑆3 + 𝜃3𝑆 ≥  𝜌3𝑚𝑎𝑥
± �
≥ 1 − 𝑝  

(5.4) 

 𝑃𝑟�𝑆1  ≥  𝜌1𝑚𝑖𝑛
± � ≥ 1 − 𝑝  (5.5) 

 𝑃𝑟�𝑆2  ≥  𝜌2𝑚𝑖𝑛
± � ≥ 1 − 𝑝 (5.6) 

 𝑃𝑟�𝑆3  ≥  𝜌3𝑚𝑖𝑛
± � ≥ 1 − 𝑝 (5.7) 

 𝑃𝑟�𝑃 −  𝛽𝑀 ≤ 𝜋𝑚𝑖𝑛
± � ≥ 1 − 𝑝 (5.8) 

 𝑃𝑟[𝑃 ≤ 𝜋𝑚𝑎𝑥± ] ≥ 1 − 𝑝 (5.9) 

 𝑂 ≥ 𝜉𝑚𝑒𝑑 − 𝜒𝑆 (5.10) 

 𝑂 ≥ 𝜉𝑚𝑖𝑛 (5.11) 

 𝛼𝐼𝑇 ≥ 𝛼𝐼𝑇𝑚𝑎𝑥 − 𝛿𝑀 − 𝜀𝑆 (5.12) 

 𝑀 + 𝑆 ≤ 𝜙 (5.13) 

 𝑇 ≤ 𝑇𝑚𝑎𝑥 (5.14) 

 (𝑆1 + 𝑆2 + 𝑆3) +  𝑆 + 𝑀 +  𝑂 
+  0.125𝑇 ≠ 0 

  (5.15) 

 
Chance constrained optimization problem, the 
constrains check for the most proper point that all 
parameters different event probability space meet at, 
i.e. the probability each cost parameters will meet 
the floor 𝜌𝑚𝑎𝑥−   or ceiling 𝜌𝑚𝑎𝑥+  after adding the 
penalty while is the procurement change for any cost 
reduction. The same goes for the selling price 
between 𝜋𝑚𝑎𝑥± . The solution was generated using 
different values of confidence giving the following 
optimal results.  
 Fig. 3 show the distribution information of 
uncertain parameters under different probability 
levels of constraint violation (𝑝𝑖). For example, if 
𝜌1𝑚𝑎𝑥 is 5.716678 under 𝑝𝑖 = 0.003, which 
indicates that such a 𝜌1𝑚𝑎𝑥  can be guaranteed with 
a probability of 1 − 𝑝𝑖 = 0.999.  Table 3 lists the 
distribution information of material and product 
prices under different probability levels of constraint 
violation (𝑝𝑖).  

 

 

Table 3: Some parameters under different pi levels. 

𝑝𝑖 𝑙𝑒𝑣𝑒𝑙 𝜌1𝑚𝑎𝑥 𝜌2𝑚𝑎𝑥 𝜌3𝑚𝑎𝑥 𝜌1𝑚𝑖𝑛 𝜌2𝑚𝑖𝑛                                                                                                 𝜌3𝑚𝑖𝑛 𝜋𝑚𝑖𝑛 𝜋𝑚𝑎𝑥 
0.0003 5.716678 1.543356 0.843336 4.716678 0.808356 0.265 11.21667 15.71668 

0.001 5.741677 1.548354 0.848335 4.741677 0.820854 0.2725 11.24167 15.74168 

0.05 5.863339 1.572678 0.872668 4.8633388 0.8816776 0.309 11.36333 15.86334 

0.1 5.893338 1.578675 0.878668 4.8933376 0.8966752 0.318 11.39333 15.89334 

0.25 5.944169 1.588838 0.888834 4.9441689 0.9220878 0.33325 11.44417 15.94417 

0.5 6 1.6 0.9 5 0.95 0.35 11.5 16 

0.75 6.056664 1.611329 0.911333 5.0566644 0.9783288 0.367 11.55667 16.05666 

0.9 6.107496 1.621491 0.921499 5.1074957 1.0037414 0.38225 11.6075 16.1075 

0.95 6.137495 1.627489 0.927499 5.1374945 1.018739 0.39125 11.6375 16.13749 

0.99 6.194159 1.638818 0.938832 5.1941589 1.0470678 0.40825 11.69417 16.19416 

0.9998 6.290822 1.658143 0.958164 5.2908217 1.0953934 0.43725 11.79083 16.29082 

 

Table 4: Results of the CCFP model under different pi levels. 
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pi level 0.0003 0.001 0.05 0.1 0.25 0.5 0.75 0.9 0.95 0.99 0.999 

f 
1.48685

3 1.481733 1.4576 1.451841 1.442251 1.43195 1.421737 1.412776 

1.40757

4 1.397918 1.381942 

P 
12.1030

3 

12.1280

3 

12.2496

9 

12.2796

9 

12.3305

3 

12.3863

6 

12.4430

3 

12.4938

6 

12.5238

6 

12.5805

3 12.67719 

S1 
4.71667

8 

4.74167

7 

4.86333

9 

4.89333

8 

4.94416

9 5 

5.05666

4 

5.10749

6 

5.13749

5 5.194159 

5.29082

2 

S2 
0.80835

6 

0.82085

4 

0.88167

8 

0.89667

5 

0.92208

8 0.95 

0.97832

9 

1.00374

1 

1.01873

9 

1.04706

8 

1.09539

3 

S3 0.265 0.2725 0.309 0.318 0.33325 0.35 0.367 0.38225 0.39125 0.40825 0.43725 

S 
0.90909

1 

0.90909

1 

0.90909

1 

0.90909

1 

0.90909

1 

0.90909

1 

0.90909

1 

0.90909

1 

0.90909

1 

0.90909

1 

0.90909

1 

M 
0.59090

9 

0.59090

9 

0.59090

9 

0.59090

9 

0.59090

9 

0.59090

9 

0.59090

9 

0.59090

9 

0.59090

9 

0.59090

9 

0.59090

9 

O 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 

T 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 

Pro�it (Z) 3.963 3.943 3.84567 3.82168 3.78102 3.73636 3.69104 3.65037 3.62638 3.69421 3.50373 

 

Table 5: Results of the CCLP model under different pi levels. 

𝑝𝑖  𝑙𝑒𝑣𝑒𝑙 0.0003 0.001 0.05 0.1 0.25 0.5 0.75 0.9 0.95 0.99 0.999 

P 12.61859 12.65225 12.81602 12.85641 12.92484 13 13.07629 13.14471 13.1851 13.26138 13.3915 

S1 5.094755 5.1261 5.278647 5.316261 5.379996 5.45 5.521049 5.584784 5.622399 5.693447 5.814649 

S2 0.808356 0.820854 0.881678 0.896675 0.922088 0.95 0.978329 1.003741 1.018739 1.047068 1.095393 

S3 0.265 0.2725 0.309 0.318 0.33325 0.35 0.367 0.38225 0.39125 0.40825 0.43725 

S 0.565385 0.559615 0.531539 0.524615 0.512885 0.5 0.486923 0.475192 0.468269 0.455192 0.432885 

M 0.934615 0.940385 0.968462 0.975385 0.987115 1 1.013077 1.024808 1.031731 1.044808 1.067115 

O 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 

T 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 

Pro�it (Z) 4.10048 4.0828 3.996698 3.975471 3.939509 3.9 3.859908 3.823936 3.802708 3.762616 3.694211 

 

Table 4 shows the results of CCFP model under 

different probability levels of constraint violation 

(𝑝𝑖).  The price and cost variables generated 

values are listed at each (𝑝𝑖) level as well as the 

profit generated at that level. The same goes for 

Table 5 that shows the same result under different 

probability levels (𝑝𝑖) but this time for the CCLP 

model. From the two tables it is obvious that the 

results obtained using CCLP is  better giving a 

higher profit at the same (𝑝𝑖).  
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Figure 3: Cumulative distributions of some 
parameters 

3.4. Fuzzy Chance-Constrained Fractional 
Programming (FCCFP) 

𝑀𝑎𝑥 𝑓

=  
𝑃

[(𝑆1 + 𝑆2 + 𝑆3) +  𝑆 + 𝑀 +  𝑂 +  0.125𝑇] 

 
 

(6.1

) 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 
 𝑃𝑟�𝑆1 + 𝜃�1𝑆 ≥  𝜌1𝑚𝑎𝑥

± �
≥ 1 − 𝑝 

(6.2) 

 𝑃𝑟�𝑆2 + 𝜃�2𝑆 ≥  𝜌2𝑚𝑎𝑥
± �
≥ 1 − 𝑝 

(6.3) 

 𝑃𝑟�𝑆3 + 𝜃�3𝑆 ≥  𝜌3𝑚𝑎𝑥
± �
≥ 1 − 𝑝 

(6.4) 

 𝑃𝑟�𝑆1  ≥  𝜌1𝑚𝑖𝑛
± � ≥ 1 − 𝑝  (6.5) 

 𝑃𝑟�𝑆2  ≥  𝜌2𝑚𝑖𝑛
± � ≥ 1 − 𝑝 (6.6) 

 𝑃𝑟�𝑆3  ≥  𝜌3𝑚𝑖𝑛
± � ≥ 1 − 𝑝 (6.7) 

 𝑃𝑟�𝑃 −  𝛽�𝑀 ≤ 𝜋𝑚𝑖𝑛
± � ≥ 1 − 𝑝 (6.8) 

 𝑃𝑟[𝑃 ≤ 𝜋𝑚𝑎𝑥± ] ≥ 1 − 𝑝 (6.9) 

 𝑂 ≥ 𝜉𝑚𝑒𝑑 − 𝜒�𝑆 (6.10) 

 𝑂 ≥ 𝜉𝑚𝑖𝑛 (6.11) 

 𝛼𝐼𝑇 ≥ 𝛼𝐼𝑇𝑚𝑎𝑥 − 𝛿𝑀 − 𝜀̃𝑆 (6.12) 

 𝑀 + 𝑆 ≤ 𝜙 (6.13) 

 𝑇 ≤ 𝑇𝑚𝑎𝑥 (6.14) 

 (𝑆1 + 𝑆2 + 𝑆3) +  𝑆 + 𝑀 +  𝑂 
+  0.125𝑇 ≠ 0 

  (6.15) 

Considering that the procurement effort for price 
reduction are not certain (e.g. 𝜃,𝛽,𝜒, 𝛿, 𝜀 ) the 
previous chance constrained model can be modified 
to a fuzzy chance constrained model so as to 
incorporate the uncertainty these parameters. This 
would add new steps to the solution algorithm. The 
solution algorithm tries to adjust the probability of 
reaching a certain raw material price, delay and cost 
values, while a parallel variation occurs to the rates 
paid to the procurement sector based on how far did 
they reached the target price value. The fuzzy 
variable is estimated between left and right 
confidence value that depends on supremum and 
infimum of the set of each parameter vailed 
membership function.  
Table 6 and Table 7 show the results of FCCFP 
model under different 𝛼 cut  levels left and right 
oriented respectively. while Table 8 and Table 9 
show the results of FCCLP model under different 𝛼 
cut  levels left and right oriented respectively.   

Table 6: FCCFP under 𝛼𝑙 𝑙𝑒𝑣𝑒𝑙 

𝛼𝑙 𝑙𝑒𝑣𝑒𝑙 0.2 0.4 0.6 0.8 

𝑓 1.408901 1.393126 1.411835 1.421013 

𝑃 

13.37864 

13.7084

9 13.62955 13.42857 

𝑆1 

5.731068 

5.92264

2 

5.85289

3 5.707143 

𝑆2 1 1.1 1.05 1 
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𝑆3 0.38 0.44 0.41 0.38 

𝑆 0.38835 0.37735 0.33057 0.357143 

𝑀 1.11165 1.1226 1.1694 1.142857 

𝑂 0.8 0.8 0.8 0.8 

𝑇 0.67786

4 0.6196 0.32711 

0.50285

7 

𝑃𝑟𝑜𝑓𝑖𝑡 (𝑍) 3.88284 3.86845 3.9758 3.97857 

Table 7: FCCFP under 𝛼𝑅 𝑙𝑒𝑣𝑒𝑙  

 𝛼𝑅 𝑙𝑒𝑣𝑒𝑙 0.2 0.4 0.6 0.8 

𝑓 1.45882

4 

1.50452

9 

1.549274 1.53688

4 

𝑃 12.4 12.47115 13.50455 11.1 

𝑆1 

4.9 4.8 

5.46363

6 4.6 

𝑆2 0.9 0.85 0.9 0.75 

𝑆3 0.32 0.29 0.32 0.23 

𝑀 

0.8333 0.6923 

0.36363

6 0.74074 

𝑆 0.666 0.80769 1.136364 0 

𝑂 

0.8 0.8 

0.44843

6 0.8 

𝑇 0.64 0.3926 0.677 0.8133 

𝑃𝑟𝑜𝑓𝑖𝑡 (𝑍) 3.9007 4.1821 4.787852 3.8776 

Table 8: FCCLP under 𝛼𝑙 𝑙𝑒𝑣𝑒𝑙 

𝛼𝑙 𝑙𝑒𝑣𝑒𝑙 0.2 0.4 0.6 0.8 

𝑃 13.37864 13.7084 13.62955 13.42857 

9 

𝑆1 

5.731068 

5.92264

2 

5.85289

3 5.707143 

𝑆2 1 1.1 1.05 1 

𝑆3 0.38 0.44 0.41 0.38 

𝑆 0.38835 0.37735 0.33057 0.357143 

𝑀 1.11165 1.1226 1.1694 1.142857 

𝑂 0.8 0.8 0.8 0.8 

𝑇 0.67786

4 0.6196 0.32711 

0.50285

7 

𝑃𝑟𝑜𝑓𝑖𝑡 (𝑍) 3.88284 3.86845 3.9758 3.978571 

 

Table 9: FCCLP under 𝛼𝑅 𝑙𝑒𝑣𝑒𝑙 

 𝛼𝑅 𝑙𝑒𝑣𝑒𝑙 0.2 0.4 0.6 0.8 

𝑃 13.10455 12.93029 14.57864 12.5864 

𝑆1 5.46363

6 

5.33042

3 5.731068 5.061399 

𝑆2 0.9 0.85 1 0.75 

𝑆3 0.32 0.29 0.38 0.23 

𝑆 

0.36363 0.37566 0.38835 

0.39896

4 

𝑀 1.13636 1.12433 1.11165 1.101036 

𝑂 0.8 0.8 0.8 0.8 

𝑇 0.50472

7 

0.56368

3 

0.67786

4 

0.23883

9 

𝑃𝑟𝑜𝑓𝑖𝑡 (𝑍) 4.05783 4.08942 5.08284 4.215145 

Table 10: The comparison between the obtained result by the prosed models and the some references 

 Model Type Solution 

Pro�it (Z) 

[10] 

LP crisp model  2.54 

LP model with fuzzy coefficients  2.64 

LP model with fuzzy constraints and objective function  3.10 

LP model with fuzzy coefficient, constraints, and objective 

functions 
3.154 
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Fuzzy rule base model, with inputs from last LP model 4.78 

[11] 

Crisp 2.5346 

fuzzy 

Trapezoidal  membership (Trapmf) 2.58 

Triangle membership  (trimf) 2.6147 

Fuzzy constraints and objective function 2.9226 

Rough 
[2.5346, 

3.0467] 

The proposed 

models 

Fractional Programming FP 2.546157 

Linear Programming  LP 2.546157 

Fuzzy Chance Constrained Linear Programming CCLP 4.10048 

Chance Constrained Fractional Programming CCFP 3.963 

Fuzzy Chance Constrained Fractional Programming FCCFP 4.787852 

Fuzzy Chance Constrained Linear Programming FCCLP 5.08284 

 
Table 10 shows a comparison between the proposed 
models and two other references results for the same 
problem. For the Automotive Industry model  of this 
paper, the best previously obtained result was that of 
[10] which could be indicated from table(10). In this 
model a fuzzy rule-based expert system was 
composed which is a problem specific tedious 
operation. However, the FCCLP managed to get a 
better optimization value of 5.08284. It could also be 
concluding from the table results that LP is slightly 
better than FP in representing the present problem. It 
also could be clearly noticed that combining fuzzy 
parameter representation to chance constrained 
optimization is recommended for better optimization 
results. 

4. Conclusions  

For automotive industry application model, two 
different LP and FP models were introduced as 
optimization models. The models were solved as 
crisp models. The uncertainty in the model 
parameters was represented using chance 
constrained and fuzzy chance constrained. Six 
different models were generated from the proposed 
modeling assumption. A comparative study between 
six model results and the previous obtained results 

was carried out. The comparison proved the 
superiority of fuzzy chance constrained optimization 
based on LP representation among all other 
algorithms. Further, modelling considerations 
incorporating game theory negotiation techniques 
could be investigated in future work. 
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